
Physique avancée II – Examen Juin 2017 – Prof. J-Ph. Ansermet

Juin 2017 - 12h15-15h15

Nom : l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2

Prénom : l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2 l2
N◦ Sciper : l2 l2 l2 l2 l2 l2

A. Cycle calorifique de Stirling avec régénérateur (4/10 points)

On considère un gaz parfait, constitué de N moles d’une seule substance, qui subit le cycle thermody-
namique de Stirling, décrit sur la figure à gauche. On fera l’hypothèse que durant tous les processus, let
taux de production interne d’entropie est négligeable. Les processus de 1 à 2 et de 3 à 4 sont isothermes.
Ils ont lieu aux températures T3 et T1. Les processus de 2 à 3 et de 4 à 1 sont isochores, aux volumes
V1 et V2.
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Le gaz est caractérisé par les équations d’état :

pV = NRT U = cNRT

Dans les dernières questions du problème, on va considérer que le gaz passe à travers une grille dont
la chaleur spécifique est Csolide = 3NsR, où Ns est le nombre de mole de la substance en laquelle la
grille est faite. La température de cette grille et celle du gaz évoluent comme indiqué sur la figure de
droite. Notez comme la grille est chauffée jusqu’à une température T ′3 pendant que le gaz est en contact
avec la source froide à la température T1, et la grille est refroidie jusqu’à une température T ′1 pendant
que le gaz est en contact avec la source chaude pendant le processus 3-4. Pendant les processus 2-3,
le gaz passe à travers la grille, ce qui provoque son échauffement et la grille refroidit. La machine est
conçue pour que dans l’intervalle de temps que dure le processus 2-3, la grille et le gaz atteignent une
température commune. De façon analogue, pendant le processus 4-1, le gaz se refroidit en passant à
travers la grille, qui se réchauffe un peu. Les valeurs V1, V2, T1, T3 sont supposées connues.

Questions et réponses au verso !
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1. (0.5 point) Calculer le travail Wcycle effectué sur le système durant un cycle.

Wcycle =

2. (0.5 point) Calculer le transfert thermique Q12 effectué pendant l’isotherme à T1.

Q12 =

3. (0.5 point) Calculer le changement d’entropie ∆S12 du gaz pendant l’isotherme à T1.

∆S12 =

4. (0.5 point) Montrer que Q23 = −Q41.

..................................................................................................................................

5. (1.0 point) Si on veut avoir une grande puissance de refroidissement, il faut répéter les pro-
cessus 2-3 et 4-1 aussi rapidement que possible. On estime ici le temps qu’il faut pour opérer
le processus 4-1 si le gaz est simplement en contact avec une paroi à la température T1. On
modélise le transfert thermique entre le gaz et la paroi par la loi : PQ = −Aκg(T − T1)/` où A
est l’aire du contact entre les N moles du gaz à la température T et la paroi à la température T1,
κg la conductivité thermique du gaz (on suppose qu’il n’y a pas de convection) et ` une dimen-
sion caractéristique du cylindre contenant le gaz. Trouver sur les feuilles annexes une équation
pour Ṫ (t) (qui implique une dépendance temporelle en forme d’exponentielle) et déterminer la
constante de temps τ de ce transfert thermique en fonction des grandeurs physiques données.

τ =

6. (0.5 point) En plus de la température de la zone froide qui devient T ′
1 < T1, quel est le

paramètre expérimental de la donnée qui change énormément quand on fait passer le gaz à
travers la grille, et qui rend PQ beaucoup plus grand ?

Paramètre : .................................................................................................................

7. (0.5 point) Quel est le changement de température de la grille T ′
3 − T3 relatif à T3 − T1 quand

le gaz froid passe à travers la grille chaude ? La chaleur spécifique de la grille est donnée par la
loi Csolide = 3NsR, où Ns est le nombre de mole de la substance avec laquelle la grille est faite.
Pour le gaz, on a CV = cNR.

T
′
3 − T3
T3 − T1

=
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1. (0.5 point) Calculer le travail Wcycle effectué sur le système durant un cycle.

Wcycle = NR(T3 − T1) ln

(
V2
V1

)

2. (0.5 point) Calculer le transfert thermique Q12 effectué pendant l’isotherme à T1, en fonction
de V1, V2, T1, T3.

Q12 = NRT1 ln

(
V2
V1

)

3. (0.5 point) Calculer le changement d’entropie ∆S12 du gaz pendant l’isotherme à T1.

∆S12 = NR ln

(
V2
V1

)
4. (0.5 point) Montrer que Q23 = −Q41.

Q41 = ∆U41 = cNR(T1 − T3) Q23 = ∆U23 = cNR(T3 − T1)

5. (1.0 point) On a

cNRṪ = −κgA
`

(T − T1)⇒
dT

T − T1
= − κgA

`cNR
dt

τ =
`cNR

κgA

6. (0.5 point) Quel est le paramètre qui change énormément quand on fait passer le gaz à travers
la grille, et qui fait que PQ est beaucoup plus grand.
Paramètre : La longueur caractéristique `. On peut penser également que la surface de contact
A est plus grande pour une grille. Pour être précis, on pourrait dire que c’est le rapport `/A qui
devient beaucoup plus petit.

7. (0.5 point)
T

′
3 − T3
T3 − T1

=
cN

3Ns
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B. Osmose de gaz (3/10 points)

Un système isolé est constitué de deux sous-systèmes rigides, immobiles, de volumes V1 et V2, séparés
par une paroi poreuse dont on admettra la propriété suivante : elle laisse passer l’hélium (He) mais pas
l’oxygène (O2). On utilisera l’indice A pour désigner l’hélium, et B pour l’oxygène. Le système entier
est à l’équilibre thermique en tout temps. Chaque gaz peut être considéré comme un gaz parfait pour
lequel on a les équations d’état habituelles :

pV = NRT U = cNRT

Le mélange des deux gaz obéit à la loi du mélange idéal :

µA(T, p, cA) = µA(T, p) +RT ln(cA) µB(T, p, cB) = µB(T, p) +RT ln(cB)

où µA(T, p) et µB(T, p) sont les potentiels chimiques des substances A, respectivement B, quand elles
sont pures, cA et cB sont les concentrations de A et B du mélange. Initialement, on a N0 moles d’hélium
dans le sous-système 1, et NB moles d’oxygène dans le sous-système 2. Les quantités d’hélium N0 et
NB sont choisies de manière à ce que la pression initiale pi soit la même dans les deux sous-systèmes. A
tout moment, chaque sous-système est supposé homogène. On notera N1 le nombre de mole d’hélium
dans le sous-système 1, N2 le nombre de moles d’hélium dans le sous-système 2.

21 21ini%al	
   final	
  

N0

NB

N0 � N2 N2

NB

A : A :A :
B :B :

pression : pi pression : pi pression : p1 pression : p2

Questions et réponses au verso !



1. (0.5 point) Pour tout gaz pur, déduire à partir de principes généraux une expression pour
∂µ(T, p)/∂p en fonction de sa température T et sa pression p :

∂µ(T, p)

∂p
=

2. (0.5 point) Pour tout gaz pur, montrer que son potentiel chimique à température fixe dépend
de la pression comme ci :

µ(T, pf ) = µ(T, pi) +RT ln

(
pf
pi

)

..................................................................................................................................

3. (0.5 point) On note ici µ1 le potentiel chimique de la substance A dans le sous-système 1, et µ2
sa valeur dans le sous-system 2. Montrer par des développements rédigés sur les feuilles annexes
que :

Ṡ1 + Ṡ2 =
1

T

(
U̇1 + U̇2

)
− µ1
T
Ṅ1 −

µ2
T
Ṅ2

4. (0.5 point) Expliquer comment déduire du résultat ci-dessus que µ1 = µ2 à l’équilibre :

..................................................................................................................................

..................................................................................................................................

5. (1.0 point) Utiliser la loi de mélange, la dépendance en pression du potentiel d’une substance
pure et la condition d’équilibre µA(T, p1) = µA(T, p2, cA) pour obtenir une relation entre les
pressions p1 et p2 quand l’équilibre des deux sous-systèmes est atteint.

..................................................................................................................................

Exprimer alors les pressions p1 et p2 ainsi que la concentration cA en fonction de N2 :

p1 = p2 = cA =

En tirer p1 et p2 en fonction de la pression initiale. On prendra ici V1 = V2, ce qui implique

NB = N0.

p1 = ......... pi p2 = ......... pi



1. (0.5 point) Pour tout gaz pur, déduire à partir de principes généraux une expression pour
∂µ(T, p)/∂p en fonction de sa température T et sa pression p : De dG = −SdT + V dp + µdN
on tire la relaxation de Maxwell

∂µ(T, p)

∂p
=
∂V

∂N
=
∂(NRT/p)

∂N
=
RT

p

2. (0.5 point) Pour tout gaz pur, montrer que son potentiel chimique à température fixe dépend
de la pression comme ci :

µ(T, pf ) = µ(T, pi) +RT ln

(
pf
pi

)
Il suffit d’intégrer le résultat ci-dessus :

dµ = RT
dp

p
⇒
∫ pf

pi

dµ =

∫ pf

pi

RT
dp

p
= RT ln

(
pf
pi

)
3. (0.5 point) On note ici µ1 le potentiel chimique de la substance A dans le sous-système 1, et
µB sa valeur dans le sous-system 2.

U̇1 = T Ṡ1 + µ1Ṅ1

U̇2 = T Ṡ2 + µ1Ṅ2

Il suffit alors de calculer Ṡ1 + Ṡ2.

4. (0.5 point)
La conservation de la quantité de matière implique Ṅ1 = −Ṅ2 et le premier principe implique
U̇1 = −U̇2. Le deuxième principe implique que l’entropie du système est maximale à l’équilibre,
donc ∂(S1 + S2)/∂N1 = 0, ce qui implique l’égalité des potentiels chimiques µ1 = µ2.

5. (1.0 point)
L’égalité du potentiel chimique de A dans 1 et dans 2 implique,

cA =
p1
p2

Or on a :
cA =

N2

N2 +N0
p1 =

(N0 −N2)RT

V
p2 =

(N0 +N2)RT

V

Il suffit de résoudre. La solution est N2 = N0/2, ce qui donne, compte tenu de N0RT/V = pi :

p1 =
pi
2

p2 =
3pi
2
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C. Les "patterns" de Turing (3/10 points)

On porte notre attention sur les densités volumiques nA et nB de deux substances A et B qui sont
présentes dans un milieu biologique. Ce milieu est capable de générer du A et du B par un processus
caractérisés par les taux πA(nA, nB) et πB(nA, nB) de production de A et de B. Les substances A et B
peuvent diffuser dans ce milieu. Les densités de courants jA et jB obéissent chacune à la loi de Fick :

jA = −DA∇nA jB = −DB∇nB

Ce système admet un état d’équilibre homogène aux densités n0A et n0B. Cela veux dire que les taux de
production de A et B sont tels que le système d’équations

ṅA = πA(nA, nB)

ṅB = πA(nA, nB)

admet une solutions stationnaire (ṅA = ṅB = 0) aux densités volumiques n0A et n0B. Un développement
limité au premier ordre de πA(nA, nB) et πB(nA, nB) autour de n0A et n0B est écrit :

πA = a11(nA − n0A) + a12(nB − n0B)

πB = a21(nA − n0A) + a22(nB − n0B)

On utilisera la notation ∆nA = (nA − n0A) et ∆nB = (nB − n0B). On admet que la matrice,

M =

(
a11 a12
a21 a22

)
est inversible (det(M)6= 0). Les variations spatiales des densités volumiques, quand il y en a, sont
fonction seulement de la coordonnée cartésienne x d’un axe de coordonnée Ox lié au milieu biologique.
Ce milieux biologique n’est pas en expansion (∇ · v=0).

Questions et réponses au verso !



1. (1.0 point) Considérez une petite boîte en forme de disque d’aire S, d’épaisseur dx, d’axe
parallèle à l’axe de coordonnée x. Etablir sur les feuilles annexes le bilan de la quantité de
substance A dans cette boîte. Montrer alors qu’on a :

ṅA = DA
∂2nA
∂x2

+ πA

.........................................................................................................................

2. (1.0 point) On suppose ici que le processus qui engendre A et B est une réaction chimique
dont on connaît les coefficients stoechiométriques νA et νB et dont la vitesse de réaction est
notée ω. La thermodynamique des processus irréversibles et la loi des mélanges idéaux fournit
les résultats suivants :

πA = νA ω πB = νB ω πS =
ωA
T

A =
−RT
n

(νA ∆nA + νB ∆nB)

où ω est la vitesse de réaction, νA et νB les coefficients stoechiométriques de la réaction. Pourquoi
doit-on supposer ω = LA avec L > 0 ?

..................................................................................................................................

Donner les expressions des éléments de la matrice M qu’on peut déduire par cette approche :

a11 = a12 = a21 = a22 =

3. (1.0 point) Ecrire les équations d’évolution pour ∆nA et ∆nB en utilisant le développement
limité de πA et πB exprimé avec les éléments de matrice aij de la donnée (pas les solutions de
la question précédente) :

˙∆nA =

˙∆nB =

On suppose maintenant qu’à t = 0 , l’état d’équilibre homogène est légèrement perturbé. On
conduit l’analyse pour une perturbation sinusoidale, qu’on exprimera par des nombres complexes
pour simplifier les calculs. Pour voir comment cette perturbation évolue dans le temps, on
suppose une évolution exponentielle. Ainsi, on pose une solution aux équations ci-dessus de la
forme : (

∆nA(x, t)
∆nB(x, t)

)
= exp (λ t) exp (−ikx)

(
aA
aB

)
(k réel)

Trouver les deux valeurs de λ pour lesquelles on a des solutions non-triviales, c’est-à-dire aA 6= 0
et aB 6= 0. Regroupez certains termes de votre calcul sous une constante (par exemple, posez :
D = a11 + a22 − k2(DA +DB)).

λ1 = λ2 =



1. (1.0 point) Le dessin doit faire voir le courant entrant et sortant, en x et x + dx, impliquant
que le bilan de substance A dans la boîte s’écrit :

ṅA = −∇ · jA + πA

Avec la loi de Fick, on a DA∇ ·∇nA, ce qui donne pour ce problème à une dimension :

ṅA = DA
∂2nA
∂x2

+ πA

2. (1.0 point) On doit supposer ωa = LA avec L > 0 pour que πS soit assurément positif. Il suffit
de regrouper les résultats annoncés :

a11 = −LRT
n
ν2A a12 = a21 = −LRT

n
νAνB a22 = −LRT

n
ν2B

3. (1.0 point) Ecrire les équations d’évolution pour ∆nA et ∆nB en utilisant le développement
limité pour πA(nA, nB) et πB(nA, nB) :

ṅA = DA
∂2nA
∂x2

+ a11∆nA + a12∆nB

ṅB = DB
∂2nA
∂x2

+ a21∆nA + a22∆nB

Les deux valeurs de λ pour lesquelles on a des solutions non-triviales sont :

λ1 = D +
√
D2 + a12a21 λ2 = D −

√
D2 + a12a21

avec D = a11 + a22 − k2(Da +DB). Les deux solutions impliquent une croissance exponentielle
(formation d’un "pattern") si a12a21 < 0 et D > 0, ce qui impose une condition sur k, a11 et
a22.

x x + dx

jA(x)

jA(x + dx)


